# Tabella dei derivati

Derivati di base:

$\frac{d}{dx}\mathrm{Const.}=0$

$\frac{d}{dx}x=1$

$\frac{d}{dx}{x}^{n}=n\cdot {x}^{n-1}$

$\frac{d}{dx}\frac{1}{x}=-\frac{1}{{x}^{2}}$

$\frac{d}{dx}\frac{1}{{x}^{n}}=-\frac{n}{{x}^{n+1}}$

$\frac{d}{dx}{a}^{x}={a}^{x}\mathrm{ln}a$

$\frac{d}{dx}{a}^{kx}={a}^{kx}k\mathrm{ln}a$

Derivati di frazioni:

$\frac{d}{dx}\frac{a\cdot x+c}{b\cdot x+c}=\frac{c\cdot \left(a-b\right)}{{\left(b\cdot x+c\right)}^{2}}$

$\frac{d}{dx}\frac{1}{a+b\cdot x}=\frac{-b}{{\left(a+b\cdot x\right)}^{2}}$

Derivate delle e-funzioni:

$\frac{d}{dx}{e}^{x}=\left({e}^{x}\right)\prime ={e}^{x}$

$\frac{d}{dx}{e}^{ax}$$=\left({e}^{ax}\right)\prime$$=a{e}^{ax}$

$\frac{d}{dx}{e}^{a{x}^{2}}$$=\left({e}^{a{x}^{2}}\right)\prime$$=2ax{e}^{a{x}^{2}}$

$\frac{d}{dx}\frac{1}{{e}^{x}}$$=\left(\frac{1}{{e}^{x}}\right)\prime$$=\left({e}^{-x}\right)\prime$$=-{e}^{-x}$$=-\frac{1}{{e}^{x}}$

$\frac{d}{dx}{e}^{\mathrm{ln}\left(x\right)}$$=\left({e}^{\mathrm{ln}\left(x\right)}\right)\prime$$=\left(x\right)\prime$$=1$

$\frac{d}{dx}{e}^{{x}^{n}}$$=\left({e}^{{x}^{n}}\right)\prime$$=n{x}^{n-1}{e}^{{x}^{n}}$

$\frac{d}{dx}{\left({e}^{x}\right)}^{n}$$=\left({\left({e}^{x}\right)}^{n}\right)\prime$$=\left({e}^{nx}\right)\prime$$=n{e}^{nx}$

Derivate delle funzioni del logaritmo:

$\frac{d}{dx}\mathrm{ln}\left(x\right)=\frac{1}{x}$

$\frac{d}{dx}{\mathrm{log}}_{a}\left(x\right)=\frac{1}{x}{\mathrm{log}}_{a}\left(e\right)$

$\frac{d}{dx}\sqrt[n]{x}=\frac{d}{dx}{x}^{\frac{1}{n}}=\frac{1}{n}\cdot {x}^{\frac{1}{n}-1}=\frac{1}{n}\cdot {x}^{\frac{1-n}{n}}=\frac{1}{n}\cdot \sqrt[n]{{x}^{1-n}}=\frac{1}{n\cdot \sqrt[n]{{x}^{n-1}}}$

$\frac{d}{dx}\sqrt{x}=\frac{1}{2\cdot \sqrt{x}}$

$\frac{d}{dx}\sqrt[3]{x}=\frac{d}{dx}{x}^{\frac{1}{3}}=\frac{1}{3}\cdot {x}^{\frac{1}{3}-1}=\frac{1}{3\cdot \sqrt[3]{{x}^{2}}}$

Derivate delle funzioni trigonometriche:

$\frac{d}{dx}\mathrm{sin}\left(x\right)=\mathrm{cos}\left(x\right)$

$\frac{d}{dx}\mathrm{cos}\left(x\right)=-\mathrm{sin}\left(x\right)$

$\frac{d}{dx}\mathrm{sin}\left(kx\right)$$=k\mathrm{cos}\left(kx\right)$

$\frac{d}{dx}\mathrm{cos}\left(kx\right)$$=-k\mathrm{sin}\left(kx\right)$

$\frac{d}{dx}\mathrm{tan}\left(x\right)$$=\frac{d}{dx}\frac{\mathrm{sin}\left(x\right)}{\mathrm{cos}\left(x\right)}$$=\frac{1}{{\mathrm{cos}}^{2}\left(x\right)}$

$\frac{d}{dx}\mathrm{cot}\left(x\right)=-\frac{1}{{\mathrm{sin}}^{2}\left(x\right)}$

$\frac{d}{dx}\mathrm{arcsin}\left(x\right)=\frac{1}{\sqrt{1-{x}^{2}}}$

$\frac{d}{dx}\mathrm{arccos}\left(x\right)=-\frac{1}{\sqrt{1-{x}^{2}}}$

$\frac{d}{dx}\mathrm{arctan}\left(x\right)=\frac{1}{1+{x}^{2}}$

$\frac{d}{dx}\mathrm{arccot}\left(x\right)=-\frac{1}{1+{x}^{2}}$

Derivate di funzioni iperboliche e funzioni aree:

$\frac{d}{dx}\mathrm{sinh}\left(x\right)=\mathrm{cosh}\left(x\right)$

$\frac{d}{dx}\mathrm{cosh}\left(x\right)=\mathrm{sinh}\left(x\right)$

$\frac{d}{dx}\mathrm{tanh}\left(x\right)=\frac{1}{{\mathrm{cosh}}^{2}\left(x\right)}$

$\frac{d}{dx}\mathrm{coth}\left(x\right)=-\frac{1}{{\mathrm{sinh}}^{2}\left(x\right)}$

$\frac{d}{dx}\mathrm{arsinh}\left(x\right)=\frac{1}{\sqrt{1+{x}^{2}}}$

$\frac{d}{dx}\mathrm{arcosh}\left(x\right)=\frac{1}{\sqrt{{x}^{2}-1}}$

$\frac{d}{dx}\mathrm{artanh}\left(x\right)=\frac{1}{1-{x}^{2}}$

$\frac{d}{dx}\mathrm{arcoth}\left(x\right)=-\frac{1}{1-{x}^{2}}$

derivata n-esima:

$\frac{{d}^{n}}{d{x}^{n}}{a}^{x}={a}^{x}{\left(\mathrm{ln}a\right)}^{n}$

$\frac{{d}^{n}}{d{x}^{n}}{a}^{kx}={a}^{kx}{\left(k\mathrm{ln}a\right)}^{n}$

$\frac{{d}^{n}}{d{x}^{n}}\mathrm{sin}\left(x\right)=\mathrm{sin}\left(x+\frac{n\pi }{2}\right)$

$\frac{{d}^{n}}{d{x}^{n}}\mathrm{cos}\left(x\right)=\mathrm{cos}\left(x+\frac{n\pi }{2}\right)$

$\frac{{d}^{n}}{d{x}^{n}}\mathrm{sin}\left(kx\right)={k}^{n}\mathrm{sin}\left(kx+\frac{n\pi }{2}\right)$

$\frac{{d}^{n}}{d{x}^{n}}\mathrm{cos}\left(kx\right)={k}^{n}\mathrm{cos}\left(kx+\frac{n\pi }{2}\right)$

## Altre calcolatrici

Qui c'è una lista di altre calcolatrici utili:

Derivati

Calcolatore di derivati Derivata e funzione Derivata radice Derivata sin cos tan Derivata sinh cosh tanh Gradiente Tabella dei derivati

Equazioni differenziali

EDO di primo ordine EDO generale del primo ordine EDO secondo ordine EDO generale secondo ordine Sistema EDO-2x2 Sistema EDO-3x3